Counting Peaks and Valleys in a Partition of a Set
نویسندگان
چکیده
A partition π of the set [n] = {1, 2, . . . , n} is a collection {B1, B2, . . . , Bk} of nonempty disjoint subsets of [n] (called blocks) whose union equals [n]. In this paper, we find an explicit formula for the generating function for the number of partitions of [n] with exactly k blocks according to the number of peaks (valleys) in terms of Chebyshev polynomials of the second kind. Furthermore, we calculate explicit formulas for the total number of peaks and valleys in all the partitions of [n] with exactly k blocks, providing both algebraic and combinatorial proofs.
منابع مشابه
Counting peaks and valleys in k-colored Motzkin paths
This paper deals with the enumeration of k-colored Motzkin paths with a fixed number of (left and right) peaks and valleys. Further enumeration results are obtained when peaks and valleys are counted at low and high level. Many well-known results for Dyck paths are obtained as special cases.
متن کاملThe upper domatic number of powers of graphs
Let $A$ and $B$ be two disjoint subsets of the vertex set $V$ of a graph $G$. The set $A$ is said to dominate $B$, denoted by $A rightarrow B$, if for every vertex $u in B$ there exists a vertex $v in A$ such that $uv in E(G)$. For any graph $G$, a partition $pi = {V_1,$ $V_2,$ $ldots,$ $V_p}$ of the vertex set $V$ is an textit{upper domatic partition} if $V_i rightarrow V_j$ or $V_j rightarrow...
متن کاملAn employee transporting problem
An employee transporting problem is described and a set partitioning model is developed. An investigation of the model leads to a knapsack problem as a surrogate problem. Finding a partition corresponding to the knapsack problem provides a solution to the problem. An exact algorithm is proposed to obtain a partition (subset-vehicle combination) corresponding to the knapsack solution. It require...
متن کاملCounting Dyck Paths According to the Maximum Distance Between Peaks and Valleys
A Dyck path of length 2n is a lattice path from (0, 0) to (2n, 0) consisting of upsteps u = (1, 1) and down-steps d = (1,−1) which never passes below the x-axis. Let Dn denote the set of Dyck paths of length 2n. A peak is an occurrence of ud (an upstep immediately followed by a downstep) within a Dyck path, while a valley is an occurrence of du. Here, we compute explicit formulas for the genera...
متن کاملk-Efficient partitions of graphs
A set $S = {u_1,u_2, ldots, u_t}$ of vertices of $G$ is an efficientdominating set if every vertex of $G$ is dominated exactly once by thevertices of $S$. Letting $U_i$ denote the set of vertices dominated by $u_i$%, we note that ${U_1, U_2, ldots U_t}$ is a partition of the vertex setof $G$ and that each $U_i$ contains the vertex $u_i$ and all the vertices atdistance~1 from it in $G$. In this ...
متن کامل